概念學(xué)習(xí)
規(guī)定:求若干個(gè)相同的有理數(shù)(均不等于0)的除法運(yùn)算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等,類比有理數(shù)的乘方,我們把2÷2÷2記作23,讀作“2的3次商”,(-3)÷(-3)÷(-3)÷(-3)記作(-3)4,讀作“-3的4次商”.一般地,我們把n個(gè)a(a≠0)相除記作an,讀作“a的n次商”.
初步探究
(1)直接寫出結(jié)果:23=1212;
(2)關(guān)于除方,下列說法錯(cuò)誤的是 ②③②③;
①任何非零數(shù)的2次商都等于1;②對于任何正整數(shù)n,(-1)n=-1;③34=43;④負(fù)數(shù)的奇數(shù)次商結(jié)果是負(fù)數(shù),負(fù)數(shù)的偶數(shù)次商結(jié)果是正數(shù).
深入思考
我們知道,有理數(shù)的減法運(yùn)算可以轉(zhuǎn)化為加法運(yùn)算,除法運(yùn)算能夠轉(zhuǎn)化為乘法運(yùn)算,那么有理數(shù)的除方運(yùn)算如何轉(zhuǎn)化為乘方運(yùn)算呢?例:24=2÷2÷2÷2=2×12×12×12=(12)2.
(3)試一試:仿照上面的算式,將下列運(yùn)算結(jié)果直接寫成乘方(冪)的形式(-3)4=(-13)2(-13)2;(17)5=7373;
(4)想一想:將一個(gè)非零有理數(shù)a的n次商寫成冪的形式等于 (1a)n-2(1a)n-2;
(5)算一算:52÷(-12)4×(-13)5+(-14)3×14=-314-314.
1
2
1
2
2
4
=
2
÷
2
÷
2
÷
2
=
2
×
1
2
×
1
2
×
1
2
=
(
1
2
)
2
(
-
1
3
)
2
(
-
1
3
)
2
(
1
7
)
5
(
1
a
)
n
-
2
(
1
a
)
n
-
2
5
2
÷
(
-
1
2
)
4
×
(
-
1
3
)
5
+
(
-
1
4
)
3
×
1
4
31
4
31
4
【考點(diǎn)】規(guī)律型:數(shù)字的變化類;有理數(shù)的混合運(yùn)算.
【答案】;②③;;73;;-
1
2
(
-
1
3
)
2
(
1
a
)
n
-
2
31
4
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:392引用:16難度:0.6
相似題
-
1.(1)計(jì)算:1-2+3-4+5-6…+99-100;
(2)計(jì)算:2-4-6+8+10-12-14+16+18-20-22+24+…+2010-2012.發(fā)布:2025/6/25 7:30:2組卷:46引用:1難度:0.6 -
2.下列排列的每一列數(shù),研究它的排列有什么規(guī)律?并填出空格上的數(shù).
(1)1,-2,1,-2,1,-2,,,,…
(2)-2,4,-6,8,-10,,,…
(3)1,0,-1,1,0,-1,,,.發(fā)布:2025/6/25 7:30:2組卷:49引用:2難度:0.3 -
3.在求1+2+22+23+24+25+26的值時(shí),小明發(fā)現(xiàn):從第二個(gè)加數(shù)起每一個(gè)加數(shù)都是前一個(gè)加數(shù)的2倍,于是他設(shè):S=1+2+22+23+24+25+26①然后在①式的兩邊都乘以2,得:2S=2+22+23+24+25+26+27 ②;②-①得2S-S=27-1,S=27-1,即1+2+22+23+24+25+26=27-1.
(1)求1+3+32+33+34+35+36的值;
(2)求1+a+a2+a3+…+a2016(a≠0且a≠1)的值.發(fā)布:2025/6/25 7:30:2組卷:106引用:2難度:0.3