試卷征集
加入會員
操作視頻

菁優(yōu)網如圖,在三棱柱ABC-A1B1C1中,AB=AC=2,D為BC的中點,平面BB1C1C⊥平面ABC.
(1)證明:AD⊥BB1;
(2)已知四邊形BB1C1C是邊長為2的菱形,且∠B1BC=60°,線段CC1上的點E,且
CE
C
C
1
(0≤λ≤1),當平面EAD與平面EAC的夾角的余弦值為
15
5
時,求λ的值.

【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/10/18 14:0:1組卷:50引用:1難度:0.4
相似題
  • 1.正四棱錐P-ABCD,底面四邊形ABCD為邊長為2的正方形,
    PA
    =
    5
    ,其內切球為球G,平面α過AD與棱PB,PC分別交于點M,N,且與平面ABCD所成二面角為30°,則平面α截球G所得的圖形的面積為

    發(fā)布:2024/12/5 8:30:6組卷:159引用:4難度:0.5
  • 菁優(yōu)網2.如圖,在直三棱柱ABC-A1B1C1中,AA1=AC=4,AB=3,BC=5,點D是線段BC的中點.
    (1)求證:AB⊥A1C;
    (2)求二面角D-CA1-A的余弦值.

    發(fā)布:2024/11/30 13:0:1組卷:321引用:5難度:0.6
  • 菁優(yōu)網3.如圖,在四棱錐P-ABCD中,底面ABCD是邊長為4的正方形,△PAD是等邊三角形,CD⊥平面PAD,E,F,G,O分別是PC,PD,BC,AD的中點.
    (1)求證:PO⊥平面ABCD;
    (2)求平面EFG與平面ABCD的夾角的大小;
    (3)線段PA上是否存在點M,使得直線GM與平面EFG所成角為
    π
    6
    ,若存在,求線段PM的長;若不存在,說明理由.

    發(fā)布:2024/12/7 16:30:5組卷:522引用:9難度:0.6
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正