如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC中點,連接DE.點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在線段AD上以5cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當(dāng)點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M在直線AC上,設(shè)點P的運動時間為t(s).
(1)當(dāng)點P在線段DE上運動時,線段DP的長為 (t-2)(t-2)cm(用含t的代數(shù)式表示);
(2)當(dāng)點N落在AB邊上時,求t的值;
(3)當(dāng)6<t<8時,設(shè)正方形PQMN與△ABC重疊部分的面積為S(cm2),求S與t的函數(shù)表達(dá)式.

5
cm
/
s
【考點】四邊形綜合題.
【答案】(t-2)
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/8 8:0:8組卷:42引用:1難度:0.2
相似題
-
1.如圖,四邊形ABCD是正方形,E是線段BC上一點,連接AE,將AE繞點E順時針旋轉(zhuǎn)90°,得到EF,過點F作FG⊥CD于點G.
(1)如圖①,當(dāng)E是BC的中點時,請直接寫出線段FG和BE的數(shù)量關(guān)系;
(2)如圖②,當(dāng)E不是BC的中點時,(1)中的結(jié)論是否成立?請說明理由;
(3)若BC=4,CE=2,EF與CD交于點P,請求出CP的長.發(fā)布:2025/6/20 12:0:2組卷:32引用:1難度:0.1 -
2.如圖1,正方形ABCD,E為平面內(nèi)一點,且∠BEC=90°,把△BCE繞點B逆時針旋轉(zhuǎn)90°得△BAG,直線AG和直線CE交于點F.
(1)證明:四邊形BEFG是正方形;
(2)若∠AGD=135°,猜測CE和CF的數(shù)量關(guān)系,并說明理由;
(3)如圖2,連接DF,若AB=13,CF=17,求DF的長.發(fā)布:2025/6/20 10:30:1組卷:97引用:1難度:0.1 -
3.已知:在?ABCD中,∠BAD=45°,AB=BD,E為BC上一點,連接AE交BD于F,過點D作DG⊥AE于G,延長DG交BC于H
(1)如圖1,若點E與點C重合,且AF=,求AD的長;5
(2)如圖2,連接FH,求證:∠AFB=∠HFB;
(3)如圖3,連接AH交BF于M,當(dāng)M為BF的中點時,請直接寫出AF與FH的數(shù)量關(guān)系.發(fā)布:2025/6/20 10:30:1組卷:532引用:2難度:0.3
相關(guān)試卷