在平面直角坐標系xOy中,曲線C的參數(shù)方程為x=2cosα, y=2sinα
(α為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為2ρsin(θ+π6)=1.
(1)求曲線C的極坐標方程和直線l的直角坐標方程;
(2)射線l′:θ=π6(ρ≥0)與曲線C的交點為A,與直線l的交點為B,記點M的直角坐標為(0,23),求△ABM的面積.
x = 2 cosα , |
y = 2 sinα |
2
ρsin
(
θ
+
π
6
)
=
1
l
′:
θ
=
π
6
(
ρ
≥
0
)
(
0
,
2
3
)
【考點】參數(shù)方程化成普通方程.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:47引用:3難度:0.7
相似題
-
1.在平面直角坐標系xOy中,已知曲線C1:
(t為參數(shù)),以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C2:ρ=2acosθ(a>0).x=t,y=2t2-t+32
(1)求曲線C1的極坐標方程和曲線C2的直角坐標方程;
(2)設射線與C1相交于A,B兩點,與C2相交于M點(異于O),若|OM|=|AB|,求a.θ=π3(ρ≥0)發(fā)布:2024/12/29 6:30:1組卷:153引用:8難度:0.7 -
2.直線l:
(t為參數(shù),a≠0),圓C:x=a-2t,y=-1+t(極軸與x軸的非負半軸重合,且單位長度相同).ρ=22cos(θ+π4)
(1)求圓心C到直線l的距離;
(2)若直線l被圓C截得的弦長為,求a的值.655發(fā)布:2024/12/29 10:0:1組卷:56引用:6難度:0.5 -
3.已知三個方程:①
②x=ty=t2③x=tanty=tan2t(都是以t為參數(shù)).那么表示同一曲線的方程是( ?。?/h2>x=sinty=sin2t發(fā)布:2025/1/7 22:30:4組卷:105引用:2難度:0.7
把好題分享給你的好友吧~~