概率統(tǒng)計(jì)在生產(chǎn)實(shí)踐和科學(xué)實(shí)驗(yàn)中應(yīng)用廣泛.請(qǐng)解決下列兩個(gè)問題.
(1)隨著中小學(xué)“雙減”政策的深入人心,體育教學(xué)和各項(xiàng)體育鍛煉迎來時(shí)間充沛的春天.某初中學(xué)校學(xué)生籃球隊(duì)從開學(xué)第二周開始每周進(jìn)行訓(xùn)練,第一次訓(xùn)練前共有6個(gè)籃球,其中3個(gè)是新球(即沒有用過的球),3個(gè)是舊球(即至少用過一次的球).每次訓(xùn)練,都是從中不放回任意取出2個(gè)籃球,訓(xùn)練結(jié)束后放回原處.設(shè)第一次訓(xùn)練時(shí)取到的新球個(gè)數(shù)為ξ,求隨機(jī)變量ξ的分布和期望.
(2)由于手機(jī)用微波頻率信號(hào)傳遞信息,那么長(zhǎng)時(shí)間使用手機(jī)是否會(huì)增加得腦瘤的概率?研究者針對(duì)這個(gè)問題,對(duì)腦瘤病人進(jìn)行問卷調(diào)查,詢問他們是否總是習(xí)慣在固定的一側(cè)接聽電話?如果是,是哪邊?結(jié)果有88人喜歡用固定的一側(cè)接電話.其中腦瘤部位在左側(cè)的病人習(xí)慣固定在左側(cè)接聽電話的有14人,習(xí)慣固定在右側(cè)接聽電話的有28人;腦瘤部位在右側(cè)的病人習(xí)慣固定在左側(cè)接聽電話的有19人,習(xí)慣固定在右側(cè)接聽電話的有27人.
根據(jù)上述信息寫出下面這張2×2列聯(lián)表中字母所表示的數(shù)據(jù),并對(duì)患腦瘤在左右側(cè)的部位是否與習(xí)慣在該側(cè)接聽手機(jī)電話相關(guān)進(jìn)行獨(dú)立性檢驗(yàn).(顯著性水平α=0.05)
習(xí)慣固定在左側(cè)接聽電話 | 習(xí)慣固定在右側(cè)接聽電話 | 總計(jì) | |
腦瘤部位在左側(cè)的病人 | a | b | 42 |
腦瘤部位在右側(cè)的病人 | c | d | 46 |
總計(jì) | a+c | b+d | 88 |
2
=
【考點(diǎn)】離散型隨機(jī)變量的均值(數(shù)學(xué)期望);離散型隨機(jī)變量及其分布列.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:200引用:2難度:0.6
相似題
-
1.某市舉行“中學(xué)生詩詞大賽”,分初賽和復(fù)賽兩個(gè)階段進(jìn)行,規(guī)定:初賽成績(jī)大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績(jī)均在區(qū)間(30,150]內(nèi),其頻率分布直方圖如圖.
(Ⅰ)求獲得復(fù)賽資格的人數(shù);
(Ⅱ)從初賽得分在區(qū)間(110,150]的參賽者中,利用分層抽樣的方法隨機(jī)抽取7人參加學(xué)校座談交流,那么從得分在區(qū)間(110,130]與(130,150]各抽取多少人?
(Ⅲ)從(Ⅱ)抽取的7人中,選出3人參加全市座談交流,設(shè)X表示得分在區(qū)間(130,150]中參加全市座談交流的人數(shù),求X的分布列及數(shù)學(xué)期望E(X).發(fā)布:2024/12/29 13:30:1組卷:127引用:7難度:0.5 -
2.設(shè)離散型隨機(jī)變量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 發(fā)布:2024/12/29 13:0:1組卷:181引用:5難度:0.5 -
3.從4名男生和2名女生中任選3人參加演講比賽,用X表示所選3人中女生的人數(shù),則E(X)為( ?。?/h2>
發(fā)布:2024/12/29 13:30:1組卷:130引用:6難度:0.7