對于一個非零整數a,將其各個數位上的數字分別立方后取其個位數字,得到一個新數b,稱b是a的“榮耀數”例如:a=125,其各個數位上的數字分別立方后得到的數為1、8、125,則其個位數字分別為1、8、5,則a的“榮耀數”b為185.
(1)18的“榮耀數”為 1212,2046的“榮耀數”為 80468046.
(2)對于一個兩位數m和一個三位數n,在m的中間位插入一個一位數k,得到一個新的三位數m',若m'是m的9倍,且n是m'的“榮耀數”,求所有滿足條件的n的值.
【考點】因式分解的應用.
【答案】12;8046
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/8/17 0:0:1組卷:593引用:4難度:0.5
相似題
-
1.閱讀下列題目的解題過程:
已知a、b、c為△ABC的三邊長,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問:(1)上述解題過程,從哪一步開始出現錯誤?請寫出該步的代號:;
(2)錯誤的原因為:;
(3)本題正確的結論為:.發(fā)布:2024/12/23 18:0:1組卷:2501引用:25難度:0.6 -
2.若a是整數,則a2+a一定能被下列哪個數整除( ?。?/h2>
A.2 B.3 C.5 D.7 發(fā)布:2024/12/24 6:30:3組卷:385引用:7難度:0.6 -
3.閱讀理解:
能被7(或11或13)整除的特征:如果一個自然數末三位所表示的數與末三位以前的數字所表示的數之差(大數減小數)是7(或11或13)的倍數,則這個數就能被7(或11或13)整除.
如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
(1)用材料中的方法驗證67822615是7的倍數(寫明驗證過程);
(2)若對任意一個七位數,末三位所表示的數與末三位以前的數字所表示的數之差(大數減小數)是11的倍數,證明這個七位數一定能被11整除.發(fā)布:2025/1/5 8:0:1組卷:121引用:3難度:0.4
把好題分享給你的好友吧~~