根據(jù)以下素材,探索完成任務.
如何確定隧道的限高? | ||||
素材1 | 從小清家到附近山區(qū)的一條雙行線公路上有一個隧道,在隧道口有一個限高標志(如圖1),表示禁止裝載高度(車頂最高處到地面)超過3.5m的車輛通行.那么這個限高3.5m是如何確定的呢? |
![]() |
||
素材2 | 小清通過實地調(diào)查和查閱相關資料,獲得以下信息: ①隧道的橫截面成軸對稱,由一個矩形和一個弓形構成. ②隧道內(nèi)的總寬度為8m,雙行車道寬度為6m,隧道圓拱內(nèi)壁最高處距路面5m,矩形的高為2m,車道兩側(cè)的人行道寬1m. ③為了保證安全,交通部門要求行駛車輛的頂部(設為平頂)與隧道圓拱內(nèi)壁在豎直方向上的高度差相差最少0.2m. |
![]() |
||
問題解決 | ||||
任務1 | 計算半徑 | 求圖1中弓形所在圓的半徑. | ||
任務2 | 確定限高 | 如圖2,在安全的條件下,3.5m的限高是如何確定的?請通過計算說明理由.(參考數(shù)據(jù): 301 |
||
任務3 | 嘗試設計 | 如果要使高度不超過3.3m,寬為2.5m的貨車能順利通過這個隧道,且不改變隧道內(nèi)的總寬度(8m)和矩形的高(2m),如何設計隧道的弓形部分(求弓形所在圓的半徑至少為多少米?)(參考數(shù)據(jù): 89 |
【考點】圓的綜合題.
【答案】(1);
(2)見(2)中解析;
(3)4.7.
25
6
(2)見(2)中解析;
(3)4.7.
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2025/6/11 18:30:2組卷:381引用:1難度:0.1
相似題
-
1.如圖1,以點O為圓心,半徑為4的圓交x軸于A,B兩點,交y軸于C,D兩點,點P為劣弧AC上的一動點,延長CP交x軸于點E;連接PB,交OC于點F.
(1)若點F為OC的中點,求PB的長;
(2)求CP?CE的值;
(3)如圖2,過點O作OH∥AP交PD于點H,當點P在弧AC上運動時,連接AC,PC.試問△APC與△OHD相似嗎?說明理由;的值是否保持不變?若不變,試證明,求出它的值;若發(fā)生變化,請說明理由.APDH發(fā)布:2025/6/24 18:30:1組卷:272引用:1難度:0.5 -
2.下面是“用三角板畫圓的切線”的畫圖過程.
如圖1,已知圓上一點A,畫過A點的圓的切線.畫法:
(1)如圖2,將三角板的直角頂點放在圓上任一點C(與點A不重合)處,使其一直角邊經(jīng)過點A,另一條直角邊與圓交于B點,連接AB;
(2)如圖3,將三角板的直角頂點與點A重合,使一條直角邊經(jīng)過點B,畫出另一條直角邊所在的直線AD.則直線AD就是過點A的圓的切線.
請回答:①這種畫法是否正確 (是或否);
②你判斷的依據(jù)是:.發(fā)布:2025/6/25 8:0:1組卷:19引用:1難度:0.4 -
3.如圖,已知⊙O′與x軸交于A、B兩點,與y軸交于C、D兩點,圓心O′的坐標是(1,-1),半徑為
.5
(1)比較線段AB與CD的大??;
(2)求A、B、C、D四點的坐標;
(3)過點D作⊙O′的切線,試求這條切線的解析式.發(fā)布:2025/6/24 20:0:2組卷:43引用:1難度:0.5