在矩形ABCD中,AB=8,BC=16,E、F是直線AC上的兩個動點,分別從A、C兩點同時出發(fā)相向而行,速度均為每秒2個單位長度,運動時間為t秒,其中(0≤t≤10).
(1)如圖1,M、N分別是AB、CD中點,當四邊形EMFN是矩形時,求t的值;
(2)若G、H分別從點A、C沿折線A-B-C,C-D-A運動,與EF相同的速度同時出發(fā).
①如圖2,若四邊形EGFH為菱形,求t的值;
②如圖3,作AC的垂直平分線交AD、BC于點P、Q,當四邊形PGQH的面積是矩形ABCD面積的1532,則t的值是 5252.
?
15
32
5
2
5
2
【考點】四邊形綜合題.
【答案】
5
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/5/29 8:0:9組卷:390引用:3難度:0.1
相似題
-
1.在正方形ABCD中,E是邊CD上一點(點E不與點C、D重合),連接BE.
【感知】如圖①,過點A作AF⊥BE交BC于點F.易證△ABF≌△BCE.(不需要證明)
【探究】如圖②,取BE的中點M,過點M作FG⊥BE交BC于點F,交AD于點G.
(1)求證:BE=FG.
(2)連接CM,若CM=1,則FG的長為 .
【應用】如圖③,取BE的中點M,連接CM.過點C作CG⊥BE交AD于點G,連接EG、MG.若CM=3,則四邊形GMCE的面積為 .發(fā)布:2025/6/13 19:30:1組卷:4524引用:23難度:0.1 -
2.已知,四邊形ABCD是矩形,AD>AB,E、F、G分別是AB、BC、AD上的點,
,AEBE=n.ADBE=DEEF
(1)當n=1,DE⊥EF.
①如圖1,求證:;ADBE=DEEF
②如圖2,連接DF,若CF=2AG,求;DFDG
(2)如圖3,,AD=2AB=10,∠GEF=45°,直接寫出△EFG面積的最小值.n=23發(fā)布:2025/6/13 17:30:5組卷:459引用:4難度:0.2 -
3.已知正方形ABCD與正方形AEFG,正方形AEFG繞點A旋轉(zhuǎn)一周.
(1)如圖①,連接BG、CF,求的值;CFBG
(2)當正方形AEFG旋轉(zhuǎn)至圖②位置時,連接CF、BE,分別取CF、BE的中點M、N,連接MN、試探究:MN與BE的關(guān)系,并說明理由;
(3)連接BE、BF,分別取BE、BF的中點N、Q,連接QN,AE=6,請直接寫出線段QN掃過的面積.發(fā)布:2025/6/13 18:30:2組卷:3922引用:6難度:0.2
相關(guān)試卷