已知函數(shù)f(x)=(x+a)lnx+a+1x.
(1)若函數(shù)f(x)在點(diǎn)(e,f(e))處的切線斜率為0,求a的值;
(2)當(dāng)a=1時(shí).
(?。┰O(shè)函數(shù)G(x)=xf′(x)f(x),求證:y=f(x)與y=G(x)在[1,e]上均單調(diào)遞增;
(ⅱ)設(shè)區(qū)間I∈[x0,x0+1](其中I?[1,e],證明:存在實(shí)數(shù)λ>1,使得函數(shù)F(x)=x2(f(x)-λf(x0))在區(qū)間I上總存在極值點(diǎn).
f
(
x
)
=
(
x
+
a
)
lnx
+
a
+
1
x
G
(
x
)
=
xf
′
(
x
)
f
(
x
)
【考點(diǎn)】利用導(dǎo)數(shù)研究函數(shù)的極值;利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:170引用:1難度:0.4
相似題
-
1.已知函數(shù)f(x)=(x-a)lnx(a∈R),它的導(dǎo)函數(shù)為f'(x).
(1)當(dāng)a=1時(shí),求f'(x)的零點(diǎn);
(2)若函數(shù)f(x)存在極小值點(diǎn),求a的取值范圍.發(fā)布:2024/12/29 13:0:1組卷:279引用:8難度:0.4 -
2.若函數(shù)
有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍為( )f(x)=e2x4-axex發(fā)布:2024/12/29 13:30:1組卷:110引用:3難度:0.5 -
3.定義:設(shè)f'(x)是f(x)的導(dǎo)函數(shù),f″(x)是函數(shù)f'(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱(chēng)點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.經(jīng)過(guò)探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”且“拐點(diǎn)”就是三次函數(shù)圖像的對(duì)稱(chēng)中心,已知函數(shù)
的對(duì)稱(chēng)中心為(1,1),則下列說(shuō)法中正確的有( ?。?/h2>f(x)=ax3+bx2+53(ab≠0)發(fā)布:2024/12/29 13:30:1組卷:151引用:6難度:0.5
把好題分享給你的好友吧~~