已知四棱錐P-ABCD,底面ABCD為平行四邊形,M,N分別為棱BC,PD上的點,CMCB=13,PN=ND,設(shè)AB=a,AD=b,AP=c,則向量MN用{a,b,c}為基底表示為( ?。?/h1>
CM
CB
=
1
3
AB
=
a
AD
=
b
AP
=
c
MN
{
a
,
b
,
c
}
【考點】空間向量基底表示空間向量.
【答案】D
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:818引用:18難度:0.7
相似題
-
1.17世紀,笛卡爾在《幾何學》中,通過建立坐標系,引入點的坐標的概念,將代數(shù)對象與幾何對象建立關(guān)系,從而實現(xiàn)了代數(shù)問題與幾何問題的轉(zhuǎn)化,打開了數(shù)學發(fā)展的新局面,創(chuàng)立了新分支——解析幾何.我們知道,方程x=1在一維空間中表示一個點;在二維空間中,它表示一條直線;在三維空間中,它表示一個平面.那么,過點P0(1,2,1)且以
=(-2,1,3)為法向量的平面的方程為( ?。?/h2>μ發(fā)布:2024/10/23 6:0:3組卷:85引用:4難度:0.8 -
2.三棱錐O-ABC中,M,N分別是AB,OC的中點,且
=OA,a=OB,b=OC,用c,a,b表示c,則NM等于( ?。?/h2>NM發(fā)布:2024/12/17 2:30:1組卷:2283引用:18難度:0.9 -
3.四棱錐P-ABCD底面ABCD為平行四邊形,M,N分別為棱BC,PD上的點,
,PN=ND,設(shè)CMCB=13,AB=a,AD=b,則向量AP=c用基底MN表示為( ?。?br />?{a,b,c}發(fā)布:2024/10/25 4:0:2組卷:430引用:6難度:0.7