已知函數(shù)f(x)=lnx-1+1x,g(x)=2ax+12x2,其中a∈R.
(1)求函數(shù)f(x)的最小值;
(2)若h(x)=4f(x)+4-4x+g(x)有兩個(gè)極值點(diǎn)x1,x2(x1<x2),求實(shí)數(shù)a的取值范圍,并證明:-x1-8x21<h(x2)<-6+4ln2..
1
x
,
g
(
x
)
=
2
ax
+
1
2
x
2
4
x
8
x
2
1
<
h
(
x
2
)
<
-
6
+
4
ln
2
【考點(diǎn)】利用導(dǎo)數(shù)求解函數(shù)的最值.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/5 8:0:9組卷:30引用:3難度:0.3
相似題
-
1.設(shè)f(x)=(x+1)ln(x+1),g(x)=ax2+x(a∈R).
(1)求f(x)的最小值;
(2)若?x≥0,f(x)≤g(x),求實(shí)數(shù)a的取值范圍.發(fā)布:2024/10/16 18:0:2組卷:95引用:5難度:0.3 -
2.已知函數(shù)f(x)=2ex-sin2x.
(1)當(dāng)x≥0時(shí),求函數(shù)f(x)的最小值;
(2)若對(duì)于,不等式4xex+xcos2x-ax2-5x≥0恒成立,求實(shí)數(shù)a的取值范圍.?x∈(-π12,+∞)發(fā)布:2024/10/11 15:0:1組卷:38引用:2難度:0.5 -
3.已知兩數(shù)f(x)=2|sinx|+cosx,則f(x)的最小值為( ?。?/h2>
發(fā)布:2024/11/8 0:0:1組卷:134引用:3難度:0.6
把好題分享給你的好友吧~~