對于函數(shù)f(x),g(x),如果它們的圖象有公共點(diǎn)P,且在點(diǎn)P處的切線相同,則稱函數(shù)f(x)和g(x)在點(diǎn)P處相切,稱點(diǎn)P為這兩個(gè)函數(shù)的切點(diǎn).設(shè)函數(shù)f(x)=ax2-bx(a≠0),g(x)=lnx.
(Ⅰ)當(dāng)a=-1,b=0時(shí),判斷函數(shù)f(x)和g(x)是否相切?并說明理由;
(Ⅱ)已知a=b,a>0,且函數(shù)f(x)和g(x)相切,求切點(diǎn)P的坐標(biāo);
(Ⅲ)設(shè)a>0,點(diǎn)P的坐標(biāo)為(1e,-1),問是否存在符合條件的函數(shù)f(x)和g(x),使得它們在點(diǎn)P處相切?若點(diǎn)P的坐標(biāo)為(e2,2)呢?(結(jié)論不要求證明)
(
1
e
,-
1
)
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/23 1:0:2組卷:83引用:3難度:0.1
相似題
-
1.設(shè)函數(shù)f(x)=x(ex+ae-x)的導(dǎo)函數(shù)為f′(x),若f′(x)是奇函數(shù),則曲線y=f(x)在點(diǎn)(1,f(1))處切線的斜率為( ?。?/h2>
發(fā)布:2024/12/14 4:0:2組卷:31引用:3難度:0.6 -
2.函數(shù)f(x)=cosx-
的圖象的切線斜率可能為( )1x發(fā)布:2024/12/16 11:30:4組卷:204引用:6難度:0.7 -
3.函數(shù)y=f(x)在P(1,f(1))處的切線如圖所示,則f(1)+f′(1)=( ?。?/h2>
發(fā)布:2024/12/15 14:30:2組卷:1156引用:10難度:0.7
把好題分享給你的好友吧~~