已知數(shù)列{an}滿(mǎn)足a1=a(a為常數(shù),a∈R),an+1=2n-3an(n∈N*),設(shè)bn=an2n(n∈N*).
(1)求數(shù)列{bn}所滿(mǎn)足的遞推公式;
(2)求常數(shù)c、q使得bn+1-c=q(bn-c)對(duì)一切n∈N*恒成立;
(3)求數(shù)列{an}通項(xiàng)公式,并討論:是否存在常數(shù)a,使得數(shù)列{an}為遞增數(shù)列?若存在,求出所有這樣的常數(shù)a;若不存在,說(shuō)明理由.
a
n
2
n
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:44引用:2難度:0.1
相似題
-
1.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,若
,5an+1=5an+2,則S5=( )a1=65發(fā)布:2024/12/29 11:0:2組卷:157引用:4難度:0.7 -
2.設(shè)a,b∈R,數(shù)列{an}滿(mǎn)足a1=a,an+1=an2+b,n∈N*,則( )
發(fā)布:2024/12/29 12:30:1組卷:3181引用:9難度:0.4 -
3.在數(shù)列{an}中,a1=1,an+1=2an+2n.
(1)設(shè)bn=.證明:數(shù)列{bn}是等差數(shù)列;an2n-1
(2)求數(shù)列{an}的通項(xiàng)公式.發(fā)布:2024/12/29 6:30:1組卷:136引用:11難度:0.3
把好題分享給你的好友吧~~