【初步感知】
如圖1,在正方形ABCD中,AD=6,點P是對角線BD上任意一點(不與B、D重合),點O是BD的中點,連接PC,過點P作PE⊥PC交直線AB于點E.
當點P與點O重合時,比較:PC ==PE(選填“>”,“<”或“=”).
【再次感知】
如圖1,當點P在線段OD上時,如何判斷PC和PE數(shù)量關(guān)系呢?
甲同學(xué)通過點P分別向AB和BC作垂線,構(gòu)造全等三角形,證明出PC=PE;
乙同學(xué)通過連接PA,證明出PA=PC,∠PAE=∠PEA,從而證明出PC=PE.
請選擇一種思路,進行探索.
【聯(lián)想感悟】
如圖2,當點P落在線段OB上時,判斷PC和PE的數(shù)量關(guān)系,并說明理由.
【拓展應(yīng)用】
如圖2,連接AP,并延長AP交直線CD于點F.
(1)若DFCF=12,求AE的長;
(2)直接寫出△APE面積S的取值范圍:0<S≤90<S≤9.

DF
CF
=
1
2
【考點】四邊形綜合題.
【答案】=;0<S≤9
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/14 0:0:8組卷:112引用:1難度:0.1
相似題
-
1.綜合與實踐
問題情境:
如圖①,點E為正方形ABCD內(nèi)一點,∠AEB=90°,將Rt△ABE繞點B按順時針方向旋轉(zhuǎn)90°,得到△CBE'(點A的對應(yīng)點為點C),延長AE交CE'于點F,連接DE.
猜想證明:
(1)試判斷四邊形BE'FE的形狀,并說明理由;
(2)如圖②,若DA=DE,請猜想線段CF與FE'的數(shù)量關(guān)系并加以證明;
解決問題:
(3)如圖①,若AB=15,CF=3,則AE的長為 .發(fā)布:2025/5/22 22:30:1組卷:178引用:1難度:0.1 -
2.已知:如圖①,菱形ABCD中,對角線AC,BD相交于點O,且AC=12cm,BD=16cm.點P從點A出發(fā),沿AB方向勻速運動,速度為1cm/s;同時,直線EF從點D出發(fā),沿DB方向勻速運動,速度為1cm/s,EF⊥BD,且與AD,BD,CD分別交于點E,Q,F(xiàn);當直線EF停止運動時,點P也停止運動.連接PC、PE,設(shè)運動時間為t(s)(0<t<8).解答下列問題:
(1)當t為何值時,點A在線段PE的垂直平分線上?
(2)設(shè)四邊形PCFE的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)如圖②,連接PO、EO,是否存在某一時刻t,使∠POE=90°?若存在,求出t的值;若不存在,請說明理由.發(fā)布:2025/5/22 21:0:1組卷:374引用:3難度:0.1 -
3.如圖,在四邊形ABCD中,AB∥CD,∠ABC=90°,AB=8cm,BC=6cm,AD=10cm,點P、Q分別是線段CD和AD上的動點.點P以2cm/s的速度從點D向點C運動,同時點Q以1cm/s的速度從點A向點D運動,當其中一點到達終點時,兩點停止運動,將PQ沿AD翻折得到QP',連接PP'交直線AD于點E,連接AC、BQ.設(shè)運動時間為t(s),回答下列問題:
(1)當t為何值時,PQ∥AC?
(2)求四邊形BCPQ的面積S(cm2)關(guān)于時間t(s)的函數(shù)關(guān)系式;
(3)是否存在某時刻t,使點Q在∠P'PD平分線上?若存在,求出t的值;若不存在,請說明理由.發(fā)布:2025/5/22 21:0:1組卷:244引用:2難度:0.1