【問題情境】
課外興趣小組活動時,老師提出了如下問題:
如圖①,△ABC中,若AB=10,AC=8,求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD至點(diǎn)E,使DE=AD,連接BE.請根據(jù)小明的方法思考:
(1)由已知和作圖能得到△ADC≌△EDB,依據(jù)是BB.
A.SSSB.SASC.AASD.HL
(2)由“三角形的三邊關(guān)系”可求得AD的取值范圍是1<AD<91<AD<9.
解后反思:題目中出現(xiàn)“中點(diǎn)”、“中線”等條件,可考慮延長中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集中到同一個三角形之中.
【初步運(yùn)用】
如圖②,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF.若EF=4,EC=3,求線段BF的長.
【靈活運(yùn)用】
如圖③,在△ABC中,∠A=90°,D為BC中點(diǎn),DE⊥DF,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF.試猜想線段BE、CF、EF三者之間的等量關(guān)系,并證明你的結(jié)論.

【考點(diǎn)】三角形綜合題.
【答案】B;1<AD<9
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/31 9:0:8組卷:647引用:5難度:0.2
相似題
-
1.如圖,在△ABC中,AB=AC,∠BAC=80°,點(diǎn)D為△ABC內(nèi)一點(diǎn),∠ABD=∠ACD=20°,E為BD延長線上的一點(diǎn),且AB=AE.
(1)求∠BAD的度數(shù);
(2)求證:DE平分∠ADC;
(3)請判斷AD,BD,DE之間的數(shù)量關(guān)系,并說明理由.發(fā)布:2025/6/21 1:30:2組卷:1216引用:5難度:0.4 -
2.如圖,在△ABC中,∠ACB=90°,AC=3,BC=6.動點(diǎn)P從點(diǎn)A出發(fā),沿AB以每秒
個單位長度的速度向終點(diǎn)B勻速運(yùn)動,同時點(diǎn)Q從點(diǎn)B出發(fā),沿折線BC-CA以每秒3個單位長度的速度向終點(diǎn)A勻速運(yùn)動.當(dāng)點(diǎn)P不與點(diǎn)A、B重合時,連結(jié)PQ,以PQ為斜邊作Rt△PMQ,使∠PMQ=90°,tan∠MPQ=5,且點(diǎn)M、B在直線PQ的兩側(cè).設(shè)點(diǎn)Q的運(yùn)動時間為t秒.43
(1)用含t的代數(shù)式表示CQ的長.
(2)當(dāng)PM⊥AB時,求PQ的長.
(3)當(dāng)點(diǎn)M在△ABC內(nèi)部時,求t的取值范圍.
(4)當(dāng)△ABC的邊與△PMO的邊所夾的角被線段PQ平分時,直接寫出t的值.發(fā)布:2025/6/20 10:30:1組卷:82引用:1難度:0.1 -
3.如圖1,在△ABC中,BO⊥AC于點(diǎn)O,AO=BO=3,OC=1,過點(diǎn)A作AH⊥BC于點(diǎn)H,交BO于點(diǎn)P.
(1)求線段OP的長度;
(2)連接OH,求證:∠OHP=45°;
(3)如圖2,若點(diǎn)D為AB的中點(diǎn),點(diǎn)M為線段BO延長線上一動點(diǎn),連接MD,過點(diǎn)D作DN⊥DM交線段OA延長線于N點(diǎn),則S△BDM-S△ADN的值是否發(fā)生改變,如改變,求出該值的變化范圍;若不改變,求該式子的值.發(fā)布:2025/6/20 14:30:1組卷:3208引用:5難度:0.3