結(jié)合圖,觀察下列式子:
(x+p)(x+q)=x2+px+qx+pq
=x2+(p+q)x+pq
于是有:x2+(p+q)x+pq=(x+p)(x+q).
(1)填空:因式分解x2+5x+6=(x+22)(x+33);
(2)化簡:(x2-x-2x2-4x+4-2x+6x2+x-6)÷xx-2;
(3)化簡:1x2+x+1x2+3x+2+1x2+5x+6+1x2+7x+12.
x
2
-
x
-
2
x
2
-
4
x
+
4
2
x
+
6
x
2
+
x
-
6
÷
x
x
-
2
1
x
2
+
x
1
x
2
+
3
x
+
2
1
x
2
+
5
x
+
6
1
x
2
+
7
x
+
12
【答案】2;3
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/14 1:30:1組卷:194引用:1難度:0.7
相似題
-
1.化簡或計(jì)算:
(1)÷a2-aba2;a2-b2ab
(2)a+1-.a2a-1發(fā)布:2025/6/15 12:30:1組卷:277引用:3難度:0.7 -
2.化簡:
-2x2+2xx2-1÷x2+x-2x2-2x+1.x+2x發(fā)布:2025/6/15 12:30:1組卷:245引用:2難度:0.7 -
3.化簡:
(1);x2x-1+x1-x
(2);2a-1+a+31-a2
(3);16-a2a2+4a+4÷a-42a+4?a+2a+4
(4).(x+8x2-4x+4-12-x)÷x+3x2-2x發(fā)布:2025/6/15 12:30:1組卷:340引用:2難度:0.5