已知函數(shù)f(x)=ex-ax2,f′(x)是f(x)的導函數(shù).
(1)若關于x的方程f′(x)=0有兩個不同的正實根,求a的取值范圍;
(2)當x≥0時,f(x)≥(e-2)x+a恒成立,求a的取值范圍.(參考數(shù)據(jù):ln2≈0.69)
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/7/19 8:0:9組卷:3引用:3難度:0.6
相似題
-
1.函數(shù)f(x)是定義在(0,+∞)上的可導函數(shù),其導函數(shù)為f'(x),且滿足
,若不等式f′(x)+2xf(x)>0在x∈(1,+∞)上恒成立,則實數(shù)a的取值范圍是( )ax?f(ax)lnx≥f(lnx)?lnxax發(fā)布:2024/12/20 7:0:1組卷:222引用:6難度:0.6 -
2.已知函數(shù)
,當x∈(0,+∞)時,f(x)≥0恒成立,則實數(shù)a的取值范圍是( ?。?/h2>f(x)=e2x-2lnx+ax+1x2發(fā)布:2024/12/20 10:0:1組卷:66引用:2難度:0.5 -
3.若存在x0∈[-1,2],使不等式x0+(e2-1)lna≥
+e2x0-2成立,則a的取值范圍是( ?。?/h2>2aex0發(fā)布:2024/12/20 6:0:1組卷:261引用:9難度:0.4
把好題分享給你的好友吧~~