如圖,在平面直角坐標(biāo)系中,拋物線y=x2+bx+c(b,c是常數(shù))經(jīng)過點(diǎn)(0,-4),其對稱軸是直線x=1.點(diǎn)A在這個(gè)拋物線上,其橫坐標(biāo)為m,點(diǎn)B、C的坐標(biāo)分別為(m,2-m)、(1-m,2-m),點(diǎn)D在坐標(biāo)平面內(nèi),以A、B、C、D為頂點(diǎn)構(gòu)造矩形ABCD.
(1)求該拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)當(dāng)點(diǎn)A、B重合時(shí),求m的值;
(3)當(dāng)拋物線的最低點(diǎn)在矩形ABCD的邊上時(shí),設(shè)該矩形與拋物線交點(diǎn)的縱坐標(biāo)之差為h(h>0),求h的值;
(4)當(dāng)該拋物線在矩形ABCD內(nèi)部的部分的圖象對應(yīng)的函數(shù)值y隨x增大而減小時(shí),直接寫出m的取值范圍.
【考點(diǎn)】二次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:243引用:4難度:0.4
相似題
-
1.如圖,直線l:y=-3x+3與x軸、y軸分別相交于A、B兩點(diǎn),拋物線y=ax2-2ax+a+4(a<0)經(jīng)過點(diǎn)B.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)已知點(diǎn)M是拋物線上的一個(gè)動點(diǎn),并且點(diǎn)M在第一象限內(nèi),連接AM、BM,設(shè)點(diǎn)M的橫坐標(biāo)為m,△ABM的面積為S,求S與m的函數(shù)表達(dá)式,并求出S的最大值;
(3)在(2)的條件下,當(dāng)S取得最大值時(shí),動點(diǎn)M相應(yīng)的位置記為點(diǎn)M′.
①寫出點(diǎn)M′的坐標(biāo);
②將直線l繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)得到直線l′,當(dāng)直線l′與直線AM′重合時(shí)停止旋轉(zhuǎn),在旋轉(zhuǎn)過程中,直線l′與線段BM′交于點(diǎn)C,設(shè)點(diǎn)B、M′到直線l′的距離分別為d1、d2,當(dāng)d1+d2最大時(shí),求直線l′旋轉(zhuǎn)的角度(即∠BAC的度數(shù)).發(fā)布:2025/6/9 17:0:1組卷:5423引用:12難度:0.1 -
2.如圖,在平面直角坐標(biāo)系中,四邊形OABC為菱形,點(diǎn)C的坐標(biāo)為(4,0),∠AOC=60°,垂直于x軸的直線l從y軸出發(fā),沿x軸正方向以每秒1個(gè)單位長度的速度運(yùn)動,設(shè)直線l與菱形OABC的兩邊分別交于點(diǎn)M、N(點(diǎn)M在點(diǎn)N的上方).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)設(shè)△OMN的面積為S,直線l運(yùn)動時(shí)間為t秒(0≤t≤6),試求S與t的函數(shù)表達(dá)式;
(3)在題(2)的條件下,t為何值時(shí),S的面積最大?最大面積是多少?發(fā)布:2025/6/9 17:0:1組卷:570引用:26難度:0.1 -
3.如圖,已知拋物線y=
x2+bx+c經(jīng)過點(diǎn)A(-1,0)、B(5,0).13
(1)求拋物線的解析式,并寫出頂點(diǎn)M的坐標(biāo);
(2)若點(diǎn)C在拋物線上,且點(diǎn)C的橫坐標(biāo)為8,求四邊形AMBC的面積;
(3)定點(diǎn)D(0,m)在y軸上,若將拋物線的圖象向左平移2個(gè)單位,再向上平移3個(gè)單位得到一條新的拋物線,點(diǎn)P在新的拋物線上運(yùn)動,求定點(diǎn)D與動點(diǎn)P之間距離的最小值d(用含m的代數(shù)式表示)發(fā)布:2025/6/9 18:30:1組卷:1924引用:6難度:0.2