已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,cos2A+cos2C=1+cos2B且b=1,
(1)求B;
(2)若AB?AC<12,求1a+1c的取值范圍;
(3)若⊙O為△ABC的外接圓,若PM、PN分別切⊙O于點(diǎn)M、N,求PM?PN的最小值.
AB
?
AC
<
1
2
1
a
+
1
c
PM
PN
【答案】(1);
(2);
(3).
B
=
π
2
(2)
(
2
2
,
+
∞
)
(3)
2
2
-
3
4
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/12 8:0:9組卷:46引用:4難度:0.5
相似題
-
1.如圖,△ABC中,D,E分別為邊BC,AC的中點(diǎn),且
與AD夾角120°,|BE|=1,|AD|=2,則BE=AB?AC發(fā)布:2025/1/24 8:0:2組卷:61引用:1難度:0.5 -
2.若向量
=(1,2),AB=(3,-4),則CB?AB=( ?。?/h2>ACA.-8 B.10 C.8 D.-10 發(fā)布:2025/1/5 18:30:5組卷:191引用:3難度:0.8 -
3.如圖,在菱形ABCD中,
,BE=12BC,若菱形的邊長為6,則CF=2FD的取值范圍為 .AE?EF發(fā)布:2025/1/28 8:0:2組卷:52引用:1難度:0.9