已知函數(shù)f(x)=12x2+cosx.
(Ⅰ)記函數(shù)f(x)的導函數(shù)是f′(x).證明:當x≥0時,f′(x)≥0;
(Ⅱ)設函數(shù)g(x)=sinx+cosx-2x-2ex,F(xiàn)(x)=af(x)+g(x),其中a<0.若0為函數(shù)F(x)的極小值點,求a的取值范圍.
1
2
x
2
sinx
+
cosx
-
2
x
-
2
e
x
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:80引用:3難度:0.5
相似題
-
1.已知函數(shù)f(x)=(x-a)lnx(a∈R),它的導函數(shù)為f'(x).
(1)當a=1時,求f'(x)的零點;
(2)若函數(shù)f(x)存在極小值點,求a的取值范圍.發(fā)布:2024/12/29 13:0:1組卷:279引用:8難度:0.4 -
2.若函數(shù)
有兩個極值點,則實數(shù)a的取值范圍為( ?。?/h2>f(x)=e2x4-axex發(fā)布:2024/12/29 13:30:1組卷:110引用:3難度:0.5 -
3.定義:設f'(x)是f(x)的導函數(shù),f″(x)是函數(shù)f'(x)的導數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”且“拐點”就是三次函數(shù)圖像的對稱中心,已知函數(shù)
的對稱中心為(1,1),則下列說法中正確的有( ?。?/h2>f(x)=ax3+bx2+53(ab≠0)發(fā)布:2024/12/29 13:30:1組卷:151引用:6難度:0.5
把好題分享給你的好友吧~~