(1)如圖1,在⊙O中AB為直徑,C為⊙O上一點,D為?AC上一動點,E為BD上一點,∠BAE=∠CAD,①求證:△ABC∽△AED.
②若⊙O半徑為5,BC=6,當(dāng)D運(yùn)動至?AC中點時,如圖2,求CD的長.
(2)若三角形ABC形狀發(fā)生變化,AB=AC,BC=6,點D為?AC上的動點,且cos∠ABC=1010,求AD?AE的值.

?
AC
?
AC
?
AC
10
10
【考點】圓的綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:142引用:1難度:0.1
相似題
-
1.如圖,在△ACE中,CA=CE,∠CAE=30°,⊙O經(jīng)過點C,且圓的直徑AB在線段AE上.
(1)試說明CE是⊙O的切線;
(2)若△ACE中AE邊上的高為h,試用含h的代數(shù)式表示⊙O的直徑AB;
(3)設(shè)點D是線段AC上任意一點(不含端點),連接OD,當(dāng)CD+OD的最小值為6時,求⊙O的直徑AB的長.12發(fā)布:2025/6/23 17:30:1組卷:4522引用:9難度:0.1 -
2.某地質(zhì)公園為了方便游客,計劃修建一條棧道BC連接兩條進(jìn)入觀景臺OA的棧道AC和OB,其中AC⊥BC,同時為減少對地質(zhì)地貌的破壞,設(shè)立一個圓形保護(hù)區(qū)⊙M(如圖所示),M是OA上一點,⊙M與BC相切,觀景臺的兩端A、O到⊙M上任意一點的距離均不小于80米.經(jīng)測量,OA=60米,OB=170米,tan∠OBC=
.43
(1)求棧道BC的長度;
(2)①設(shè)OM=x,圓形保護(hù)區(qū)⊙M的半徑為y,求y關(guān)于x的函數(shù)關(guān)系式,并求出自變量x的取值范圍;
②當(dāng)點M位于何處時,可以使該圓形保護(hù)區(qū)的面積最大?發(fā)布:2025/6/23 15:0:2組卷:41引用:1難度:0.3 -
3.如圖,C為圓周上一點,BD是⊙O的切線,B為切點.
(1)在圖(1)中,AB是⊙O的直徑,∠BAC=30°,則∠DBC的度數(shù)為.
(2)在圖(2)中,∠BA1C=40°,求∠DBC的度數(shù).
(3)在圖(3)中,∠BA1C=α,求∠DBC的大?。?br />(4)通過(1)、(2)、(3)的探究,你發(fā)現(xiàn)的結(jié)論是
(5)如圖(4),AC是⊙O的直徑,∠ACB=60°,連接AB,過A、B兩點分別作⊙O的切線,兩切線交于點P.若已知⊙O的半徑為1,則△PAB的周長為.
(6)如圖(5),C是⊙O的直徑AB延長線上的一點,CD切⊙O于D,∠ACD的平分線分別交AD、BD于E、F,試猜想∠DEF的度數(shù)并說明理由.發(fā)布:2025/6/23 22:0:2組卷:106引用:1難度:0.3
相關(guān)試卷