如圖,“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼接成的大正方形,若直角三角形的兩條直角邊長分別為a,b(a>b),大正方形的面積為S1,小正方形的面積為S2,則用含S1,S2的代數(shù)式表示(a+b)2正確的是( ?。?/h1>
【考點】勾股定理的證明.
【答案】C
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/26 4:0:1組卷:984引用:7難度:0.5
相似題
-
1.勾股定理被譽為“幾何明珠”,在數(shù)學(xué)的發(fā)展歷程中占有舉足輕重的地位.中國數(shù)學(xué)史上最先完成勾股定理證明的數(shù)學(xué)家是公元3世紀(jì)三國時期的趙爽,他為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱其為“趙爽弦圖”(如圖(1)所示).圖(2)由弦圖變化得到,它是由八個全等的直角三角形拼接而成的.記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,若S1+S2+S3=129,則S2的值是 .
發(fā)布:2025/6/13 12:30:10組卷:109引用:4難度:0.6 -
2.勾股定理是歷史上第一個把數(shù)與形聯(lián)系起來的定理,其證明是論證幾何的發(fā)端.下面四幅圖中不能證明勾股定理的是( ?。?/h2>
發(fā)布:2025/6/13 13:30:1組卷:2250引用:21難度:0.8 -
3.如圖,四個全等的直角三角形拼成“趙爽弦圖”,得到正方形ABCD與正方形EFGH.連結(jié)EG,BD相交于點O、BD與HC相交于點P.若GO=GP,則
的值是( ?。?/h2>S△ABDS△EFG發(fā)布:2025/6/13 14:0:2組卷:2132引用:5難度:0.3