教材中這樣寫道:“我們把多項式a2+2ab+b2及a2-2ab+b2叫做完全平方式”,如果關(guān)于某一字母的二次多項式不是完全平方式,我們常做如下變形:
先添加一個適當?shù)捻?,使式子中出現(xiàn)完全平方式,再減去這個項,使整個式子的值不變,這種方法叫做配方法.
配方法是一種重要的解決問題的數(shù)學方法,不僅可以將一個看似不能分解的多項式分解因式,還能解決一些與非負數(shù)有關(guān)的問題或求代數(shù)式最大值,最小值等.
例如:分解因式x2+2x-3.
原式=(x2+2x+1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1);
例如:求代數(shù)式x2+4x+6的最小值.
原式=x2+4x+4+2=(x+2)2+2.
∵(x+2)2≥0,
∴當x=-2時,x2+4x+6有最小值是2.
根據(jù)閱讀材料用配方法解決下列問題:
(1)分解因式:m2-4m-5;
(2)求代數(shù)式x2-6x+12的最小值;
(3)若y=-x2+2x-3,當x=11時,y有最 大大值(填“大”或“小”),這個值是 -2-2;
(4)當a,b,c分別為△ABC的三邊時,且滿足a2+b2+c2-6a-10b-6c+43=0時,判斷△ABC的形狀并說明理由.
【答案】1;大;-2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:252引用:2難度:0.6
相關(guān)試卷