如圖,在平面直角坐標(biāo)系xOy中,已知拋物線y=ax2+bx+c與x軸交于A(-3,0),B(1,0)兩點,與y軸交于點C(0,3),連接AC,點P為第二象限拋物線上的動點.
(1)求a、b、c的值;
(2)連接PA、PC,求△PAC面積的最大值;
(3)在拋物線的對稱軸上是否存在一點Q,使得△QAC為直角三角形,若存在,請求出所有符合條件的點Q的坐標(biāo);若不存在,請說明理由.

【考點】二次函數(shù)綜合題.
【答案】(1)a=-1,b=-2,c=3;
(2);
(3)存在,點Q的坐標(biāo)為:(-1,-2)或(-1,4)或(-1,)或(-1,).
(2)
27
8
(3)存在,點Q的坐標(biāo)為:(-1,-2)或(-1,4)或(-1,
3
+
17
2
3
-
17
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1618引用:5難度:0.4
相似題
-
1.如圖所示,拋物線y=x2-2x-3與x軸相交于A、B兩點,與y軸相交于點C,點M為拋物線的頂點.
(1)求點C及頂點M的坐標(biāo).
(2)若點N是第四象限內(nèi)拋物線上的一個動點,連接BN、CN,求△BCN面積的最大值及此時點N的坐標(biāo).
(3)直線CM交x軸于點E,若點P是線段EM上的一個動點,是否存在以點P、E、O為頂點的三角形與△ABC相似.若存在,求出點P的坐標(biāo);若不存在,請說明理由.發(fā)布:2025/6/15 20:30:5組卷:511引用:3難度:0.1 -
2.如圖,拋物線y=
x2+bx-2與x軸交于A、B兩點,與y軸交于C點,且A(-1,0).12
(1)求拋物線的解析式及頂點D的坐標(biāo);
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點M是拋物線對稱軸上的一個動點,當(dāng)△ACM周長最小時,求點M的坐標(biāo)及△ACM的最小周長.發(fā)布:2025/6/15 6:30:1組卷:2010引用:14難度:0.5 -
3.邊長為1的正方形OA1B1C1的頂點A1在x軸的正半軸上,如圖將正方形OA1B1C1繞頂點O順時針旋轉(zhuǎn)75°得正方形OABC,使點B恰好落在函數(shù)y=ax2(a<0)的圖象上,則a的值為 .
發(fā)布:2025/6/14 23:30:1組卷:2330引用:24難度:0.7