試卷征集
加入會(huì)員
操作視頻

在勾股定理的學(xué)習(xí)過(guò)程中,我們已經(jīng)學(xué)會(huì)了運(yùn)用如圖圖形,驗(yàn)證著名的勾股定理,這種根據(jù)圖形直觀推論或驗(yàn)證數(shù)學(xué)規(guī)律和公式的方法,簡(jiǎn)稱為“無(wú)字證明”.實(shí)際上它也可用于驗(yàn)證數(shù)與代數(shù),圖形與幾何等領(lǐng)域中的許多數(shù)學(xué)公式和規(guī)律,它體現(xiàn)的數(shù)學(xué)思想是(  )

【考點(diǎn)】勾股定理的證明
【答案】C
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/17 8:0:8組卷:2656引用:43難度:0.8
相似題
  • 1.如圖是一個(gè)“趙爽弦圖”,它是由四個(gè)全等的直角三角形圍成一個(gè)大正方形,中空的部分也是一個(gè)小正方形,若大正方形的邊長(zhǎng)為7,小正方形的邊長(zhǎng)為3,直角三角形的兩直角邊分別為a,b,則ab的值為

    發(fā)布:2025/6/7 11:0:1組卷:255引用:5難度:0.7
  • 2.勾股定理在平面幾何中有著不可替代的重要地位,在我國(guó)古算書(shū)《周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載.如圖1是由邊長(zhǎng)均為1的小正方形和Rt△ABC構(gòu)成的,可以用其面積關(guān)系驗(yàn)證勾股定理.將圖1按圖2所示“嵌入”長(zhǎng)方形LMJK,則該長(zhǎng)方形的面積為( ?。?/h2>

    發(fā)布:2025/6/8 3:0:2組卷:1952引用:7難度:0.5
  • 3.如圖,“趙爽弦圖”是由四個(gè)全等的直角三角形與一個(gè)小正方形拼成大正方形,若小正方形邊長(zhǎng)為1,大正方形邊長(zhǎng)為5,則一個(gè)直角三角形的周長(zhǎng)是( ?。?/h2>

    發(fā)布:2025/6/8 2:0:5組卷:1587引用:5難度:0.5
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正