試卷征集
加入會員
操作視頻

定義:在平面直角坐標系xOy中,已知點P1(a,b),P2(c,b),P3(c,d),這三個點中任意兩點間的距離的最小值稱為點P1,P2,P3的“最佳間距”.例如:如圖,點P1(-1,2),P2(1,2),P3(1,3)的“最佳間距”是1.
(1)理解:點Q1(2,1),Q2(5,1),Q3(5,5)的“最佳間距”是
3
3

(2)探究:已知點O(0,0),A(-4,0),B(-4,y)(y≠0).
①若點O,A,B的“最佳間距”是2,則y的值為
±2
±2
;
②點O,A,B的“最佳間距”最大是多少?請說明理由.
(3)遷移:當點O(0,0),E(m,0),P(m,-2m+1)的“最佳間距”取到最大值時,點P的坐標是
1
3
,
1
3
)或(1,-1)
1
3
,
1
3
)或(1,-1)

【考點】三角形綜合題
【答案】3;±2;(
1
3
,
1
3
)或(1,-1)
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/9/25 10:0:2組卷:61引用:1難度:0.5
相似題
  • 1.如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,動點P從點A出發(fā)沿線段AB以每秒3個單位長的速度運動至點B,過點P作PQ⊥AB交射線AC于點Q,設(shè)點P的運動時間為t秒(t>0).
    (1)線段AQ的長為
    ,線段PQ的長為
    .(用含t的代數(shù)式表示)
    (2)當△APQ與△ABC的周長的比為1:4時,求t的值.
    (3)設(shè)△APQ與△ABC重疊部分圖形的面積為S,求S與t之間的函數(shù)關(guān)系式.

    發(fā)布:2025/6/25 4:0:1組卷:19引用:1難度:0.3
  • 2.如圖,在△ABC中,BC=5,AD⊥BC,BE⊥AC,AD,BE相交于點O,BD:CD=2:3,且AE=BE.
    (1)求線段AO的長;
    (2)動點P從點O出發(fā),沿線段OA以每秒1個單位長度的速度向終點A運動,動點Q從點B出發(fā)沿射線BC以每秒4個單位長度的速度運動.P,Q兩點同時出發(fā),當點P到達A點時,P,Q兩點同時停止運動.設(shè)點P的運動時間為t秒,△AOQ的面積為S,請用含t的式子表示S,并直接寫出相應(yīng)的t的取值范圍;
    (3)在(2)的條件下,點F是直線AC上的一點,且CF=BO,是否存在t值,使以點B,O,P為頂點的三角形與以點F,C,Q為頂點的三角形全等?若存在,請直接寫出符合條件的t值;若不存在,請說明理由.

    發(fā)布:2025/6/25 5:0:1組卷:191引用:3難度:0.4
  • 3.已知等腰直角△ABC的直角邊AB=BC=10cm,點P,Q分別從A.C兩點同時出發(fā),均以1cm/s的相同速度做直線運動,已知P沿射線AB運動,Q沿邊BC的延長線運動,PQ與直線AC相交于點D.設(shè)P點運動時間為t,△PCQ的面積為S.
    (1)求出S關(guān)于t的函數(shù)關(guān)系式.
    (2)當點P在線段AB上時,點P運動幾秒時,S△PCQ=
    1
    4
    S△ABC?
    (3)作PE⊥AC于點E,當點P.Q運動時,線段DE的長度是否改變?證明你的結(jié)論.

    發(fā)布:2025/6/23 23:0:10組卷:243引用:1難度:0.1
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正