(1)在△ABC中,AB=nAC,∠BAC=α,∠DAE=12α,且點D,E為邊BC上的點(分
別不與點B,C重合,且點D在點E左側(cè)).
①初步探究
如圖1,若n=1,α=120°,BD=CE,試探究BD,DE,CE之間的數(shù)量關(guān)系.
下面是小東的探究過程(不完整),請補充完整.
1
2
解:∵n=1,α=120°, ∴AB=AC,∠BAC=120°,∠DAE=60°. ∴∠ABD=∠ACE=30°. 如圖4,將△ABD繞點A逆時針旋轉(zhuǎn)120°,得到△ACG,連接GE. 由旋轉(zhuǎn)的性質(zhì),可知△AGC≌△ADB, ∴BD=CG,AD=AG,∠ACG=∠ABD=30°. ∴CE=CG,∠GCE=60°. ∴△CGE為等邊三角形.(依據(jù): 有一個角為60°的等腰三角形 有一個角為60°的等腰三角形 )∴CG= CE CE =GE GE .∵∠DAG=120°,∠DAE=60°, ∴∠DAE=∠EAG=60°, 又∵AE=AE, ∴△ADE≌△AGE. ∴DE=GE. ∴BD=CE=DE. |
如圖2,若n=1,α=90°,BD≠CE,請寫出BD,DE,CE之間的數(shù)量關(guān)系,并就圖2的情形說明理由.
(2)問題解決
如圖3,在△ABC中,∠BAC=45°,AM⊥BC于點M,BM=3,CM=2,點N為線段BC上一動點,當點N為BC的三等分點時,直接寫出AN的長.

【考點】幾何變換綜合題.
【答案】有一個角為60°的等腰三角形;CE;GE
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:247引用:1難度:0.4
相似題
-
1.如圖(1),在矩形ABCD中,AB=6,BC=2
,點O是AB的中點,點P在AB的延長線上,且BP=3.一動點E從O點出發(fā),以每秒1個單位長度的速度沿OA勻速運動,到達A點后,立即以原速度沿AO返回;另一動點F從P點出發(fā),以每秒1個單位長度的速度沿射線PA勻速運動,點E、F同時出發(fā),當兩點相遇時停止運動,在點E、F的運動過程中,如圖(2)以EF為邊作等邊△EFG,使△EFG和矩形ABCD在射線PA的同側(cè).設運動的時間為t秒(t>0).3
(1)如圖(3),當?shù)冗叀鱁FG的邊FG恰好經(jīng)過點C時,求運動時間t的值;
(2)如圖(4),當?shù)冗叀鱁FG的頂點G恰好落在CD邊上時,求運動時間t的值;
(3)在整個運動過程中,設等邊△EFG和矩形ABCD重疊部分的面積為S,請求出S與t之間的函數(shù)關(guān)系式,并寫出相應的自變量,的取值范圍.發(fā)布:2025/1/13 8:0:2組卷:357引用:2難度:0.5 -
2.如圖,在等邊△ABC中,點D在BC邊上,點E在AC的延長線上,且DE=DA.
(1)求證:∠BAD=∠EDC;
(2)點E關(guān)于直線BC的對稱點為M,聯(lián)結(jié)DM,AM.
①根據(jù)題意將圖補全;
②在點D運動的過程中,DA和AM有什么數(shù)量關(guān)系并證明.發(fā)布:2024/12/23 14:0:1組卷:266引用:2難度:0.2 -
3.如圖,在菱形ABCD中,AB=10cm,對角線BD=12cm,動點P從點A出發(fā),以1cm/s的速度沿AB勻速運動;動點Q同時從點D出發(fā),以2cm/s的速度沿BD的延長線方向勻速運動.當點P到達點B時,點P,Q同時停止運動.設運動時間為t(s)(0<t≤10),過點P作PE∥BD,交AD于點E,以DQ、DE為邊作?DQFE,連接PD,PQ.
(1)當t為何值時,點P在以BQ為直徑的圓上?
(2)設四邊形BPFQ的面積為S(cm2),求S與t的函數(shù)關(guān)系式.
(3)在運動過程中,是否存在某一時刻t,使四邊形BPFQ的面積與菱形ABCD面積之比為25:32?若存在,求出t的值;若不存在,請說明理由.
(4)是否存在某一時刻t,使點P在∠BQF的平分線上?若存在,求出t的值;若不存在,請說明理由.發(fā)布:2025/1/28 8:0:2組卷:26引用:0難度:0.2
相關(guān)試卷