定義:我們不妨把縱坐標是橫坐標2倍的點稱為“青竹點”.例如:點(1,2)、(-2.5,-5)……都是“青竹點”.顯然,函數(shù)y=x2的圖象上有兩個“青竹點”:(0,0)和(2,4).
(1)下列函數(shù)中,函數(shù)圖象上存在“青竹點”的,請在橫線上打“√”,不存在“青竹點”的,請打“×”.
①y=2x-1 ××;②y=-x2+1 √√;③y=x2+2 ××.
(2)若拋物線y=-12x2-m+1(m為常數(shù))上存在兩個不同的“青竹點”,求m的取值范圍;
(3)若函數(shù)y=14x2+(b-c+2)x+a+c-3的圖象上存在唯一的一個“青竹點”,且當-1≤b≤2時,a的最小值為c,求c的值.
y
=
-
1
2
x
2
-
m
+
1
y
=
1
4
x
2
+
(
b
-
c
+
2
)
x
+
a
+
c
-
3
【考點】二次函數(shù)綜合題.
【答案】×;√;×
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/7/7 8:0:9組卷:650引用:3難度:0.2
相似題
-
1.如圖,已知拋物線y=ax2+bx-2與x軸的兩個交點是A(4,0),B(1,0),與y軸的交點是C.
(1)求該拋物線的解析式;
(2)在直線AC上方的該拋物線上是否存在一點D,使得△DCA的面積最大?若存在,求出點D的坐標及△DCA面積的最大值;若不存在,請說明理由;
(3)設拋物線的頂點是F,對稱軸與AC的交點是N,P是在AC上方的該拋物線上一動點,過P作PM⊥x軸,交AC于M.若P點的橫坐標是m.問:
①m取何值時,過點P、M、N、F的平面圖形不是梯形?
②四邊形PMNF是否有可能是等腰梯形?若有可能,請求出此時m的值;若不可能,請說明理由.發(fā)布:2025/1/2 8:0:1組卷:82引用:1難度:0.5 -
2.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為.
發(fā)布:2024/12/23 17:30:9組卷:3639引用:37難度:0.4 -
3.如圖,將矩形OABC置于平面直角坐標系中,點A的坐標為(0,4),點C在x軸上,點D(3
,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標平面內(nèi),設點B的對應點為點E.若拋物線y=ax2-45ax+10(a≠0且a為常數(shù))的頂點落在△ADE的內(nèi)部,則a的取值范圍是( ?。?/h2>5發(fā)布:2024/12/26 1:30:3組卷:2663引用:7難度:0.7